

Prueba en Un Solo Paso en Panel Integrado en Vaso (Orina) Ficha Técnica

REF DOA-157	REF DOA-187	REF DOA-1117	
REF DOA-167	REF DOA-197	REF DOA-1127	E spañol
DEEDOA 177	DEE DOA 1107		

Ficha técnica para la combinación de las siguientes drogas:

REF DOA-127

REF DOA-137

REF DOA-147

Amfetamina, Amfetamina 500, Amfetamina 300, Barbitúricos, Benzodiazepina, Benzodiazepina 200, Buprenorfina, Cocaina, Cocaina 150, Marihuana, Metadona, Metanfetamina, Metanfetamina 500, Metanfetamina 300, Metilenedioximetanfetamina, Morfina 300, Opiáceo 2000, Oxicodon, Fenciclidina, Propoxifeno y Antidepresivos Tricíclicos.

Prueba rápida en una sola etapa para la detección cualitativa simultánea de drogas múltiples y sus metabolitos en orina humana.

Solo para el uso médico y otro profesional de diagnóstico in vitro.

USO INDICADO Y RESUMEN

Las prueba rápidas de screening en orina de drogas múltiples de abuso van desde sencillos prueba de inmunoensayos hasta procedimientos analíticos complejos. La rapidez y sensibilidad de los inmunoensayos ha hecho de ellos el método mas ampliamente aceptado para el screening de drogas múltiples de abuso en orina.

La Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina) es un inmunoensayo cromatográfico de flujo lateral para la detección de las siguientes drogas, y puede realizarse sin necesidad de utilizar ningún aparato.¹

Prueba	Calibrador	Cut-off (ng/ml)			
Amfetamina (AMP)	d-Amfetamina	1.000			
Amfetamina (AMP 500)	d-Amfetamina	500			
Amfetamina (AMP 300)	d-Amfetamina	300			
Barbitúrico (BAR)	Secobarbital	300			
Benzodiazepinas (BZO)	Oxazépam	300			
Benzodiazepinas (BZO 200)	Oxazépam	200			
Buprenorfina (BUP)	Buprenorfina	10			
Cocaína (COC)	Benzoilecgonina	300			
Cocaína (COC 150)	Benzoilecgonina	150			
Marihuana (THC)	11-nor-? 9-THC-9 COOH	50			
Metadona (MTD)	Metadona	300			
Metanfetamina (MET)	d-Metanfetamina	1.000			
Metanfetamina (MET 500)	d-Metanfetamina	500			
Metanfetamina (MET 300)	d-Metanfetamina	300			
Metilenedioximetanfetamina (MDMA)	d,l-Metilenedioximetanfetamina	500			
Morfina (MOP 300)	Morfina	300			
Opiaceo (OPI 2000)	Morfina	2.000			
Oxicodon (OXY)	Oxicodon	100			
Fenciclidina (PCP)	Fenciclidina	25			
Propoxifeno (PPX)	Propoxifeno	300			
Antidepresivos Tricíclicos (TCA)	Nortriptyline	1.000			

Este prueba detecta también otros compuestos relacionados con los de interés, para lo que puede referirse a la relación que aparece en el apartado de Especificidad.

Esta técnica únicamente proporciona un resultado analítico preliminar cualitativo. Para obtener la confirmación de un resultado, debe emplearse un método químico alternativo más específico. El método preferido para confirmación, es el GC/MS (Cromatografía gaseosa/Espectrometría de masas). La consideración clínica y el buen juicio profesional deben aplicarse a cualquier resultado de prueba de drogas de abuso, en particular cuando se utilizan resultados preliminares positivos.

PRINCIPIO

La Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina) es un inmunoensayo cromatográfico rápido basado en el principio de uniones competitivas. Las dogas que pueden estar presentes en la muestra de orina compiten frente a los respectivos conjugados de las drogas por los puntos de unión al anticuerpo.

Durante la prueba la muestra de orina migra hacia arriba por acción capilar. Cualquier droga si se encuentra presente en la orina en concentración inferior al de su cut-off, no saturará los puntos de unión de las partículas recubiertas de anticuerpo en la placa de la prueba. Las partículas recubiertas de anticuerpo serán capturadas por el conjugado inmobilizado de la droga específica y una línea visible de color aparecerá en la zona de la prueba. Esta línea de color no se formará en la zona de la prueba si el nivel del cut-off de la droga está por encima del nivel del cut-off, porque saturará todos los puntos de unión de los anticuerpos.

Una muestra de orina positiva no generará una línea de color en la zona de la prueba debido a la competencia de la droga, mientras que una muestra de orina negativa o una muestra con una concentración inferior a la del cut-off generará una línea en la zona de la prueba. Para servir como procedimiento de control, una línea coloreada aparecerá siempre en la zona de control si la prueba ha sido realizada correctamente y con un volumen adecuado de muestra.

REACTIVOS

En el panel de Multidroga, cada línea de las diferentes pruebas contiene anticuerpos monoclonales de ratón unidos a partículas y conjugados de las diferentes pruebas. Un anticuerpo de cabra se emplea en el sistema de la línea del control.

RECALICIONES

- □ Solo para el uso médico y otro profesional de diagnóstico in vitro. No usar después de la fecha de caducidad
- ☐ La prueba debe permanecer en la bolsa sellada hasta el momento de su empleo.
- ☐ Todas las muestras deben ser consideradas como potencialmente infecciosas y deben manejarse de la misma forma que los agentes infecciosos.
- ☐ La prueba, una vez utilizado, debe desecharse de acuerdo con las regulaciones locales.

ALMACENAMIENTO Y ESTABILIDAD

Almacenar tal como está empaquetado en la bolsa sellada a temperatura ambiente o refrigerado (2-30°C). La prueba es estable hasta la fecha de caducidad que figura en la bolsa. La prueba se mantendrá en la bolsa sellada hasta su uso. NO CONGELAR. No utilizar después de la fecha de caducidad.

OBTENCIÓN Y PREPARACIÓN DE LA MUESTRA

Valoración de la Muestr

Se debe tomar la muestra de orina en un envase limpio y seco. Se pueden usar muestras de orina recogidas en cualquier momento del día. Aquellas muestras que presenten partículas visibles deberían ser centrifugadas, filtradas o permitir que sedimenten para obtener una muestra clara para realizar la prueba.

macenamiento de las Muestras

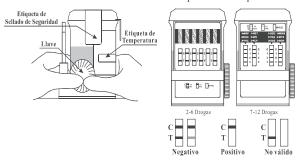
Las muestras de orina pueden ser almacenadas entre 2 y 8°C hasta 48 horas previas a la realización de la prueba. Para un periodo más prolongado se deben congelar a -20°C. Las muestras congeladas deben alcanzar la temperatura ambiente y mezclarse bien antes de realizar la prueba.

MATERIALES

Materiales Suministrados

☐ Vasos con Panel de Multidrogas

☐ Llaves ☐ Etiquetas de sello de seguridad ☐ Ficha técnica


Laterial Requerido No Suministrado

□ Cronómetro

INSTRUCCIONES DE USO

Permita que la prueba, la muestra de orina, y/o los controles estén a temperatura ambiente (15-30°C) antes de realizar la prueba.

- Deje que la bolsa de la prueba alcance la temperatura ambiente antes de abrirla. Extraiga entonces el Vaso y usuelo tan pronto como sea posible.
- Retire la etiqueta para poder quitar la tapa;ecoja la muestra de orina nuevo la tapa y presione sobre las tres esquinas para asegurarla.
- Comprobar la etiqueta de temperatura 4 minutos después de la recogida de la muestra. Un color verde aparecerá para indicar la temperatura de la muestra de orina. El rango apropiado para una muestra de orina no adulterada es 32-38°C (90-100°F).
- Compruebe que la tapa cierra herméticamente, ponga fecha a la etiqueta del cierre de seguridad y sitúela sobre la tapa.
- Quite una Îlave de la prueba, coloque el vaso sobre una superficie plana y presione la llave contra el vaso para comenzar con la prueba. Ponga en marcha el cronómetro.
- 6. Retire la etiqueta protectora que cubre los resultados de la prueba y espere que aparezca la línea o líneas de color. L os resultados deberán leerse a los 5 minutos. No interpretar resultados pasados 10 minutos.

INTERPRETACIÓN DE LOS RESULTADOS

(Consultar la figura anterior)

NEGATIVO: * A parecen dos líneas. Una línea roja debe estar en la zona del control (C) y otra línea roja o rosa aparecerá en la zona de la prueba (T) junto a cada parámetisto resultado negativo indica que la concentración de la droga está por debajo del nivel detectable designado por el cut-off del parámetro afectado.

*NOTA: La intensidad del color rojo de la línea de la región de la prueba (T) puede variar, pero cualquier coloración roja, por muy débil que sea, deberá considerarse como resultado negativo.

POSITIVO: U na línea roja a parece en la región de control (C). y no a parecerá en la zona de la prueba (T) j unto a cada parámetro. Este resultado positivo indica que la concentración de la droga en la muestra de orina excede de los niveles del cut-off del parámetro afectado.

NO VÁLIDO: No aparece la línea de control. Un volumen de muestra insuficiente o un procedimiento incorrecto son las posibles razones de la ausencia de la línea de control. Revise el procedimiento y repita la prueba usando una nueva prueba. Si el problema persiste, deje de utilizar ese lote y contacte con su distribuidor local.

Un control interno está incluido en la prueba. La línea roja que aparece en la región de control (C) es considerada como un procedimiento de control interno. Confirma que se ha utilizado un volumen suficiente de muestra y se ha realizado correctamente la técnica.

No se suministran controles estándar con la prueba, sin embargo, se recomienda realizar controles positivos y negativos como buena práctica de laboratorio para verificar tanto el procedimiento como el comportamiento de la prueba.

LIMITACIONES

- 1. La Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina) proporciona sólo un resultado analítico preliminar cualitativo. Debe emplearse un segundo método analítico para confirmar el resultado. Cromatografía de gases y Espectrometría de masas (GC/MS) son los métodos analíticos más apropiados para la confirmación.^{2,3}
- Es posible que errores técnicos o de procedimiento, así como otras substancias que interfieren, presentes en la muestra de la orina, pueden causar resultados erróneos.
- 3. Adulterantes como lejía y/o el alumbre en la muestra de orina, pueden producir resultados erróneos independientemente del método analítico usado. Si se sospecha adulteración, la prueba deberá repetirse con otra muestra de orina.
- 4. Un resultado positivo indica presencia de la droga o de sus metabolitos, pero no indica el nivel de intoxicación, la vía de intoxicación o la concentración de droga en la orina.
- 5. Un resultado negativo no necesariamente indica la ausencia de droga en la orina. Pueden obtenerse resultados negativos cuándo la droga está presente pero en niveles inferiores a los del cut-off de la prueba.
- 6. La prueba no distingue entre drogas de abuso y determinados medicamentos.
- 7. Ciertos alimentos o suplementos alimenticios pueden dar resultados positivos.

CARACTERÍSTICAS TÉCNICAS

Evactitu

Se realizo una comparación empleando Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina) y otra prueba rápida disponible comercialmente. La prueba se realizó en 300 muestras de orina recogidas de individuos a comprobar presencia de drogas. Los resultados en principio positivos fueron confirmados por GC/MS, obteniéndose los siguientes resultados:

% de Concordancia con otra prueba

			/0 uc	Conco	luancia	COIL	Jui	ı pı uc	cua				
Muestra	AMP	AMP 500	AMP 300	BAR	BZO	BZ(-	BUP	**	coc	COC 150	THC	MTD
Positivo	>99%	*	>99%	98%	99%	*		88%	0	>99%	>99%	>99%	87%
Negativo	>99%	*	>99%	>99%	>99%	*		>99%	%	99%	>99%	>99%	>99%
Total	>99%	*	>99%	99%	99%	*		97%	0	99%	>99%	>99%	94%
Muestra	MET	MET 500	MET 300	MDM	4Δ I	OP 00	-	PI 000	0	XY	PCP	PPX	TCA
Positivo	>99%	>99%	*	98%	6 95	%	99	9%	9	6%	>99%	>99%	92%
Negativo	>99%	82%	*	>999	% >9	9%	>9	9%	9	9%	>99%	>99%	>99%
Total	>99%	89%	*	99%	6 97	%	99	9%	9	8%	>99%	>99%	98%

- * NOTA: Este Sistema de Monitoreo, no se encuentra disponible para exámenes de comparación comercial.
- ** NOTA: La BUP fue comparada con el auto-informe del uso de la Buprenorfina.

% de Concordancia con GC/MS

Muestra	AMP	AMP 500	AMP 300	BAR	BZO	BZO 200	BU	P*	COC	COC 150	THC	MTD
Positivo	94%	95%	>99%	92%	99%	98%	98	%	95%	99%	95%	93%
Negativo	99%	>99%	99%	99%	98%	99%	99	%	>99%	>99%	96%	>99%
Total	97%	98%	99%	96%	98%	99%	99	%	98%	99%	95%	97%
Muestra	MET	MET 500	MET 300	MDM	A MO		OPI 2000	(OXY	PCP	PPX	TCA**
Positivo	90%	99%	98%	99%	98	%	99%	Ģ	98%	90%	94%	>99%
Negativo	>99%	96%	>99%	97%	97	%	99%	Š	99%	99%	99%	94%
	_	_			\neg	%	99%	_	99%	96%	97%	95%

- * NOTA: La BUP estuvo basado en data de LC/MS (Cromatografía Líquida/ Espectrometría de Masa) en lugar de GC/MS (Cromatografía de Gases/ Espectrometría de Masa).
- **NOTA: TCA se basó en datos de HPLC en vez de GC/MS.

Sensibilidad

A una muestra de orina libre de drogas s**a**ñadieron concentraciones de droga de \pm 50 % y \pm 25 % de los valores del cut-off. Los resultados fueron los siguientes.

Dance de Cut eff	_	Al	ИP	AMI	500	AMP	300	BA	R	BZ	0	BZO	200	BU	P
Rango de Cut-off	n	-	+	-	+	-	+	-	+	-	+	-	+	-	+
0% Cut-off	30	30	0	30	0	30	0	30	0	30	0	90	0	90	0
-50% Cut-off	30	30	0	30	0	30	0	30	0	30	0	90	0	90	0
-25% Cut-off	30	26	4	24	6	25	5	23	7	24	6	81	9	78	12
Cut-off	30	23	7	16	14	16	14	14	16	15	15	54	36	48	42
±250/_ Cut_off	30	7	23	4	26	4	26	7	23	6	24	25	65	24	66

Danga da Cur	Rango de Cut-off n		o de Cut-off n COC		OC	COC 150		THC		MTD		MET		MET 500		MET 300	
Kango de Cu	1-011	11	-	+	-	+	-	+	•	+	•	+	-	+	-	+	
0% Cut-of	f	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	
-50% Cut-o	off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	
-25% Cut-o	off	30	25	5	27	3	24	6	26	4	25	5	27	3	27	3	
Cut-off		30	20	10	13	17	15	15	13	17	23	7	13	17	15	15	
+25% Cut-o	off	30	5	25	7	23	6	24	5	25	6	24	7	23	5	25	
+50% Cut-o	off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	

Rango de Cut-off n		MDMA		MOI	MOP 300		OPI 2000		OXY		PCP		PPX		CA
Kango de Cut-on	11	-	+	-	+	-	+	•	+	•	+	-	+	-	+
0% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-50% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-25% Cut-off	30	27	3	20	10	26	4	30	0	26	4	26	4	25	5
Cut-off	30	17	13	18	12	11	19	18	12	19	11	19	11	13	17
+25% Cut-off	30	6	24	7	23	5	25	6	24	5	25	8	22	7	23
+50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30

Especificidad

La siguiente tabla, lista los compuestos y la concentración en (ng/ml) para cada parámetro que se detectarán en muestras positivas, con la Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina). El resultado debe leerse a los 5 minutos.

resultado debe leerse a los 5 minutos. AMFETAMINA		METADO
d-Amfetamina	1.000	Metadona
d.I-Amfetamina	3.000	Doxylami
I-Amfetamina	50.000	METANI
Phentermine	3,000	d-Metanfe
3,4-Methylendioxyamphetamine (MDA)	2.000	p-Hydrox
AMFETAMINA 500	2.000	l-Metanfe
d-Amfetamina	500	Mephente
d.l-Amfetamina	1.500	3,4-Metile
β-Feniletilamina	50.000	METANI
1		d-Metanfe
3,4-Methylendioxyamphetamine (MDA)	800	
Phentermine	1.500	p-Hydrox
Tryptamina	50.000	l-Metanfe
Tiramina	25.000	Mephente
AMFETAMINA 300	200	d,l-Amfeta
d-Amfetamina	300	(1R,2S)-(-
d,l-Amfetamina	390	β-Feniletil
1-Amfetamina	50.000	3,4-Metile
3,4-Methylendioxyamphetamine (MDA)	1.560	d-Amfetai
p-Hydroxyamphetamine	1.560	Cloroquin
d,l-Norafedrina	100.000	1-Fenilefrii
β-Feniletilamina	100.000	METANI
Tiramina	100.000	d-Metanfe
p-Hidroxyamfetamina	100.000	d,l-Amfeta
Fenilpropanolamina (d,l-Norafedrina)	100.000	Cloroquin
BARBITÚRICOS	p-	Hydroxymetl
Secobarbital	300	l-Metanfe
Amobarbital	300	
Alphenol	150	Mephente
Aprobarbital	200	(1R,2S)-(-
Butabarbital	75	l-Epinefrir
Butethal	100	Efedrina
Butalbital	2.500	(-) Deoxie
Cyclopentobarbital	600	Fenfluram
Pentobarbital	300	Trimethob
Phenobarbital	100	OXICOD
METILENEDIOXIMETANFETAMINA		Oxicodon
3,4-Metilenedioximetanfetamina (MDMA)	500	Hydrocod
3,4-Methylenedioxyamphetamine (MDA)	3,000	Hydromoi
3,4-Methylenedioxyethylamphetamine (MDEA)	300	Levorpha
PROPOXIFENO	•	
d-Propoxifeno	300	Naltrexon

METADONA	
Metadona	300
Doxylamine	50.000
METANFETAMINA	
d-Metanfetamina	1.000
p-Hydroxymethamphetamine	30.000
l-Metanfetamina	8.000
Mephentermine	50.000
3,4-Metilenedioximetanfetamina	2.000
METANFETAMINA 500	
d-Metanfetamina	500
p-Hydroxymethamphetamine	15.000
l-Metanfetamina	4.000
Mephentermine	25.000
d,l-Amfetamina	75.000
(1R,2S)-(-)-Efedrina	50.000
β-Feniletilamina	75.000
3,4-Metilenedioximetanfetamina	1.000
d-Amfetamina	50.000
Cloroquina	12.500
l-Fenilefrina	100.000
METANFETAMINA 300	
d-Metanfetamina	300
d,l-Amfetamina	100.000
Cloroquina	25.000
droxymethamphetamine	25.000
l-Metanfetamina	3.125
	780
Mephentermine	50.000
(1R,2S)-(-)-Efedrina	100.000
1-Epinefrina	50.000
Efedrina	100.000
(-) Deoxiefedrina	25.000
Fenfluramina	12.500
Trimethobenzamida	25.000
OXICODON	
Oxicodon	100
Hydrocodone	6.250
Hydromorphone	50.000
Levorphanol	50.000
Naltrexona	37.500

BENZODIAZEPINAS		BENZODIAZEPINAS 200	
Oxazepam	300	Alprazolam	195
Alprazolam	196	α-Hydroxyalprazolam	1.562
α-Hydroxyalprazolam	1.262	Bromazepam	390
Bromazepam	1.562	Chlordiazepoxide	780
Chlordiazepoxide	1.562	Clobazam	390
Clonazepam	781	Clorazepate	1.562
Clobazam	98	Desalkylflurazepam	1.000
Clonazepam	781	Diazepam	200
Clorazepate	195	Estazolam	780
Delorazepam	1.562	Flunitrazepam	12.500
Desalkylflurazepam	390	Lorazepam	100.000
Diazepam	195	Midazolam	6.250
Estazolam	2.500	Nitrazepam	100
Flunitrazepam	390	Norchlordiazepoxide	3.125
d,l-Lorazepam	1.562	Nordiazepam	780
RS-Lorazepam glucuronide	156	Oxazepam	200
Midazolam	12.500	Temazepam	100
Nitrazepam	98	Triazolam	50.000
Norchlordiazepoxide	195	7-Aminoflunitrazepam	200
Nordiazepam	390	7-Aminonitrazepam	5.000
Temazepam	98	7-Aminoclonazepam	>100,000
Triazolam	2.500	BUPRENORFINA	
MORFINA 300 Buprenorfina	2.500	10	
Morfina	300	Norbuprenorfina	20
Codeine	300	- totoupremorma	15
Ethylmorphine	6.250	Norbuprenorfina 3-D-glucuronide	200
Hydrocodone	50.000	COCAINA	
Hydromorphone	3.125	Benzoylecgonine	300
Levorphanol	1.500	Cocaina	780
6-Monoacetylmorphine (6-MAM)	400	Cocaethylene	12.500
Morfina 3-β-D-glucuronide	1.000	Ecgonine 32.000	
Norcodeine	6.250	COCAINA 150	
Normorfina	100.000	Benzoylecgonine	150
Oxicodon	30.000	Cocaina	400
Oxymorphone	100.000	Cocaethylene	6.250
Procaine	15.000	Ecgonine	12.500
Thebaine	6.250	Ecgonine methylester	50.000
OPIACEO 2000	1	MARIHUANA	
Morfina	2.000	11-nor-Δ ⁹ -THC-9 COOH	50
Codeine	2.000	Cannabinol	20.000
Ethylmorphine	5.000	11-nor- Δ^8 -THC-9 COOH	30
Hydrocodone	12.500	Δ^8 -THC	15.000
Hydromorphone	5.000	Δ^9 -THC	15.000
Levorphanol	75,000	ANTIDEPRESIVOS TRICÍCLICOS	15.000
6-Monoacetylmorphine (6-MAM)	5.000	Nortriptyline	1.000
Morfina 3-β-D-glucuronide	2.000	Nordoxepin	1.000
Norcodeine	12.500	Trimipramine	3.000
Normorfina	50.000	Amitriptyline	1.500
Oxicodon	25.000	Promazine	1.500
Oxymorphone	25.000	Desipramine	200
Procaine	150.000	Imipramine	400
	100.000	Clomipramine	12.500
			12.500
Thebaine FENCICLIDINA	100.000	Doxepin	2.000
FENCICLIDINA Fenciclidina	25	Doxepin Maprotiline	2.000

Reactividad Cruzada

Se realizó un estudio para determinar la reactividad-cruzada de la prueba con otros compuestos en la orina, en orina libre de droga y en orina con presencia de cualesquiera de las drogas siguientes: Amfetamina, Amfetamina 500, Amfetamina 300, Barbitúricos, Benzodiazepina, Benzodiazepina 200, Buprenorfina, Cocaina, Cocaina 150, Marihuana, Metadona, Metanfetamina, Metanfetamina 500, Metanfetamina 300, Metilenedioximetanfetamina, Morfina 300, Opiáceo 2000, Oxicodon, Fenciclidina, Propoxifeno y Antidepresivos Tricíclicos.

Los siguientes compuestos no muestran reactividad cruzada cuando se ensayan con Prueba de Multidrogas en Un Solo Paso en Panel Integrado en Vaso (Orina) en concentraciones de $100\,$ $\alpha g/ml$.

Compuestos que no Muestran Reactividad Cruzad

Acetophenetidin	l-Cotinine	Ketamine	d-Pseudoephedrine
N-Acetylprocainamide	Creatinine	Ketoprofen	Quinidine
Acetylsalicylic acid	Deoxycorticosterone	Labetalol	Quinine
Aminopyrine	Dextromethorphan	Loperamide	Salicylic acid
Amoxicillin	Diclofenac	Meprobamate	Serotonin
Ampicillin	Diflunisal	Methoxyphenamine	Sulfamethazine
l-Ascorbic acid	Digoxin	Metilfenidata	Sulindac
Apomorphine	Diphenhydramine	Nalidixic acid	Tetracycline
Aspartame	Ethyl-p-aminobenzoate	Naproxen	Tetrahydrocortisone,
Atropine	β-Estradiol	Niacinamide	3-Acetate
Benzilic acid	Estrone-3-sulfate	Nifedipine	Tetrahydrocortisone
Benzoic acid	Erythromycin	Norethindrone	Tetrahydrozoline
Bilirubin	Fenoprofen	Noscapine	Thiamine
d,l-Brompheniramine	Furosemide	d,l-Octopamine	Thioridazine
Caffeine	Gentisic acid	Oxalic acid	d,l-Tyrosine
Cannabidiol	Hemoglobin	Oxolinic acid	Tolbutamide
Chloralhydrate	Hydralazine	Oxymetazoline	Triamterene
Chloramphenicol	Hydrochlorothiazide	Papaverine	Trifluoperazine
Chlorothiazide	Hydrocortisone	Penicillin-G	Trimethoprim
d,l-Chlorpheniramine	o-Hydroxyhippuric acid	Perphenazine	d,l-Tryptophan
Chlorpromazine	3-Hydroxytyramine	Phenelzine	Uric acid
Cholesterol	d,l-Isoproterenol	Prednisone	Verapamil
Clonidine	Isoxsuprine	d,l-Propanolol	Zomepirac
Cortisone			

BIBLIOGRAFIA

- 1. Tietz NW. Textbook of Clinical Chemistry. W.B. Saunders Company. 1986; 1735
- Baselt RC. <u>Disposition of Toxic Multi-Drugs and Chemicals in Man</u>. 2nd Ed. Biomedical Publ., Davis, CA. 1982; 488
- Hawks RL, CN Chiang. Urine Testing for Drugs of Abuse. National Institute for Drug Abuse (NIDA), Research Monograph 73, 1986

Índice de Símbolos

<u> </u>	Atención, ver instrucciones de uso	\sum	Pruebas por kit	FC REP	Representante autorizado
IVD	Solo para uso de diagnóstico in vitro		Caducidad	2	No reutilizar
20°C	Almacenar entre 2-30°C	LOT	Número de lote	REF	Nº de Referencia